Midterm 1 Solutions

1. Compute
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Solution: Substitute x = 3sinf, so
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2. Find the area of the surface obtained by rotating the curve given by

y=2ve+1, 0<zx<3

around the z-axis.



Solution: The area is given by
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3. Find k& € R such that

defines a probability density function.
Solution: Need to find k such that f(z) > 0 for all = and / f(z)dz = 1.

The first condition is satisfied as long as &£ > 0. For the second we compute:
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We have

and similarly the other integral is also g Therefore,
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So f is a probability density function precisely when k = —

™
Remark: This is called the Cauchy distribution.
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4. Compute




Solution: Substitute u = /= so that u? = 2 and 3u?du = dz. Then
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Long division gives
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(Perhaps a little quicker would be substituting « = 1 + /=, then the denom-

inator is u and the division is easier)

5. For each of the following improper integrals decide whether it converges
or diverges. No justification is needed.



(Correct answer = +3 points, wrong answer = (0 points, blank = 1.5 points)

Integral Converges | Diverges
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Solution:

(a) Converges. Intuition: Exponential goes to 0 much quicker than the
polynomial grows. To see it rigorously either integrate by parts 20
2

x
times to get rid of the 2% term or use lim —— = 0 to deduce 2% < ¢*
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for large enough x, so that we have 0™ < o707 for large enough =,
and the integral of the latter converges.
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(b) Diverges. Split the integral into / —dz + / —dz. The second in-
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tegral diverges by lecture (the first one also does), so the integral in



question diverges.

Diverges. Intuition: As z — —o0, the integrand goes to oc.
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Converges. Intuition: For large =, [T is approximately T =
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Diverges. Intuition: LA i ~ for x close to 0
l—22 (1-2)(1+2) 1-=z

over [0, 1] diverges by lecture (it is basically

and the integral of
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the same as / —dz after a substitution). Precisely: Do comparison
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test using
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the latter converges by lecture since 2 > 1. Precisely: Do comparison
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test using —— > — = —.
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Converges. Intuition:
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Converges. Intuition: arctan z ~ z for small z, so ———= ~ —; for
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x large, so the integral should converge. Precisely: Use the inequality
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